线性代数:05 实对称矩阵与二次型

本讲义是自己上课所用幻灯片,里面没有详细的推导过程(笔者板书推导)只以大纲的方式来展示课上的内容,以方便大家下来复习。

本章是特征值与特征向量知识的延续,根据谱定理可知实对称矩阵可以正交对角化,对角阵为其特征值,正交矩阵为其两两正交的单位特征向量。除此之外,还介绍了二次型,标准形,规范形的知识。二次型的化简问题是本章的核心,我们即可以通过配方法做可逆变换化二次型为标准形,又可以通过正交法做正交变换化二次型为标准形,还可以通过合同法做合同变换化二次型为标准形。由于二次型的标准形不唯一,所以我们去寻找这些标准形的共性,得到了惯性指数、正惯性指数、负惯性指数这些概念,以及惯性定理,发现规范形是唯一的。最后介绍了最特殊的二次型,即正定二次型,其对应的矩阵为正定矩阵。以及正定矩阵的判定定理。本章相对前一章就简单很多了,希望大家好好复习,把基本概念和方法搞明白。

推荐两个学习线性代数的资源:

1. 麻省理工公开课 Linear Algebra

  • https://www.bilibili.com/video/av15463995/
  • 相较于国内老师从行列式入手,MIT老师从几何空间的角度,更加直观揭示线代的内核。

2. 线性代数的本质

  • https://www.bilibili.com/video/BV1ys411472E
  • 通过直观的动画演示来理解线性代数的大部分核心概念。

关注本公众号并回复 资料下载 可以获取MIT线性代数公开课英文教材和中文笔记一份,以方便大家学习。


01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

知识结构


老马的程序人生 CSDN认证博客专家 终身学习者
我是终身学习者“老马”,一个长期践行“结伴式学习”理念的中年大叔。我崇尚分享,渴望成长,于2010年创立了“LSGO软件技术团队”,并加入了国内著名的开源组织“Datawhale”,也是“Dre@mtech”、“智能机器人研究中心”和“大数据与哲学社会科学实验室”的一员。愿我们一起学习,一起进步,相互陪伴,共同成长。
已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 代码科技 设计师:Amelia_0503 返回首页